

Student: Orges Cico

Models and techniques to evaluate
Software and System reliability

 Outline
 Dependability Concepts
 Means to achieve dependable software
 Reliability Measures
 Reliability Models
 Case Study
 Possible Tool usage
 Suggestions

 Dependability Concepts

 General Definition
 Dependability is a value showing the reliability of a person to others

because of his/her integrity, truthfulness, and trustfulness, traits that can
encourage someone to depend on him/her.

 Computer System Dependability
 Dependability as applied to computer systems is defined as the

trustworthiness of a computer system such that reliance can justifiably be
placed on the service it delivers.

 Dependability can be thought of as being composed of three elements:
 Impairments
 Means
 Attributes

© 1996 Handbook of Software Reliability Engineering, M. Luy

 Dependability Tree
 The main characteristics of dependability can be summarized in the

form of a tree:

Dependability

Impairments

Means

Attributes

Faults

Errors

Failures

Construction

Validation

Fault Tolerance

Fault Prevention

Fault Forecasting

Fault Removal

Confidentiality

Maintainability
Safety

Integrity

Reliability

Availability
Security

 Impairments, Means and Attributes
 Impairments

 Things that can affect Dependability
 Means

 Ways to increase Dependability
 Attributes

 Way to assess Dependability

 Means to achieve dependable software

 Means

Dependability

Impairments

Means

Attributes

Faults

Errors

Failures

Construction

Validation

Fault Tolerance

Fault Prevention

Fault Forecasting

Fault Removal

Confidentiality

Maintainability
Safety

Integrity

Reliability

Availability
Security

 Means
 Fault Prevention

 Prevent fault occurrence or introduction
 Fault Removal

 Reduce the presence of faults
 Fault Tolerance

 Ensures a service capable of fulfilling system's functions in presence of faults
 Fault Forecasting

 Predicts likely faults so that they can be removed or their effects can be
circumvented

 Fault Prevention
 Fault prevention techniques are dependability enhancing techniques

employed during software development to reduce the number of faults
introduced during construction.

 Fundamental techniques:
 Refinement of system requirements
 Engineering software specification process
 Structured design methods (e.g. writing clear and structured code)
 Reusability
 Formal Methods

 System Requirements Specification

 Imperfect process
 System failures may occur

 due to logic errors incorporated in the requirements
 Software matches requirements, but the derived system behavior is not the
expected one
 Due to lack of communication between software and system engineering
disciplines

 Solution: Interactive refinement of requirements and engineering of the
requirements specification process

 Structured Design vs Formal Methods

 Structured Software Design and programming reduces component's
complexity and interdependency => reduces the introduction of faults

 Decoupling and modularization
 Information hiding

 Formal Methods are very thorough, using mathematically tractable
languages and tools to verify correctness and appropriateness.

 Drawback: overhead on the development process
 Used for small components highly critical to the entire system

 Reusablity

 Reusability of code components can be helpful when the code to be
reused has been proven to be dependable

 Drawback: reuse of software doesn't guarantee improvement in dependability
(e.g. highly reliable software is not necessarily safer)

 Fault Removal

 Fault removal techniques involve
 Detecting existing faults (through verification and validation (V&V) methods)
 Eliminating existing faults

 This techniques improve system dependability through:
 Software Testing
 Formal inspection
 Formal design proofs

 Fault Removal Techniques

 Software testing
 Prohibitive cost
 Complexity of exhaustive testing over large systems
 Testing can show the presence but not the absence of faults
 Adequate test coverage and appropriate test quality measures
 Efficient testing only on small and critical components

 Formal Inspection
 Rigorous process, accompanied by documentation
 Source code examination to find, correct faults and verify correction
 Performed prior to the testing phase life cycle

 Fault Removal Techniques

 Formal design proofs
 Closely related to formal methods
 Mathematical proof for correctness
 Costly and complex to use
 Not fully developed methods
 Feasible on a small and critical portion of code

 Fault Forecasting

 Fault Forecasting focuses on the reliability measure of dependability
 Fault Forecasting techniques are used during validation to:

 Estimate the presence of faults
 The occurrence and consequences of failures

 This techniques include two types of activities:
 Reliability Estimation
 Reliability Prediction

 Reliability Estimation and Prediction

 Reliability Estimation
 Determines current software reliability through statistical interference
techniques to failure data obtained during testing or system operation

 Reliability Prediction
 Determines future software reliability based upon available software metrics

and measures
 Techniques used depend on the software development stage

 Fault Tolerance

 Fault Tolerance techniques enable a system to tolerate software faults
remaining in the system after its development

 This techniques provide service complying with the relevant
specification in spite of faults through:

 Single Version Software Environment
 Multiple Version Software Environment
 Multiple Data Representation Environment

 Single vs Multiple Version SE

 Single Version SE
 Monitoring
 Atomicity of actions
 Decision Verification
 Exception Handling

 Multiple Version SE (design diversity)
 Functionally equivalent and independent software versions
 Examples: Recovery Blocks (RcB), N-version programming (NVP), N-self

checking programming

 Redundancy for software fault tolerance

 Robust Software
 Out of range inputs
 Inputs of the wrong type
 Inputs in the wrong format

 Redundancy Implementation

 Design Diversity

 Provision of identical services through separate design and
implementations

 Design diverse techniques

 Well-known design diverse techniques are:
 Recovery Blocks (RcB)
 N-Version Programming (NVP)
 Distributed Recovery Blocks
 N Self-Checking Programming
 Consensus Recovery Block
 Acceptance Voting

 Data diversity

 Three well-known data diverse techniques are:
 Retry blocks (Amman and Knight)
 N-Copy Programming (Ammann and Knight)
 Two pass adjudicator (Phullum)

 Reliability Measures

 Software Reliability Definition and Measure

 Software Reliability is defined as the probability of failure-free software
operation for a specified period of time in a specified environment

 => Reliability may be used as a measure of the system's success in
providing it's function properly

 Reliability Measure

 Reliability Function R(t) is the probability that a system will be successful in the
interval from time 0 to time
 Mathematically:

 T is a random variable denoting the time-to-failure

R t = P Tt s.t. t≥0

 Time to failure: probability density function
 The time to failure random variable T has a density function f(t), such

that:

 f(t) describes how the failure probability is spread over time
 f(t) properties:

 Non-negative
 Total area beneath f(t) is equal to one :

f t = lim
 t 0

P t T ≤ t t

∫
0

∞

f t dt = 1

 Common pdf
 Common probability distribution functions (pdf) that have applications in

reliability engineering (Pham 2000a) are:
 Binomial Distribution
 Poisson Distribution
 Exponential Distribution
 Normal Distribution
 Weibull Distribution

 Given a particular pdf:
 R(t) can be derived directly

 Availability Measure
 Availability A(t) is defined as the probability that the the system is successful at

time t
 Mathematically:

 Repairable systems:
 Non-repairable systems:

A t =
Systemuptime

SystemuptimeSystemdowntime
=

MTTF
MTTFMTTR

A t ≥R t

A t = R t

 Availability: Mean Time Between Failures (MTBF)
 MTBF is the expected value of the random variable time between

failures defined as:

MTBF = MTTFMTTR

Up

Down
off Failure Failure

Downtime (unplanned) Uptime (after repair)

 Time Between Failures

 Reliability Models

 Model Types
 It is highly desirable and difficult, without knowing what the initial errors

are, to have an estimate of the remaining errors in a software system
 There exist two main types of software reliability models:

 Deterministic
 Probabilistic

 Deterministic Reliability Models

 Deterministic Model
 The Deterministic Model is used to study in the program:

 The number of distinct operators and operands
 The number of errors and machine instructions

 Performance measures of deterministic type are obtained:
 By analyzing the program texture
 Do not involve any random event

 Well-known models
 There exist two deterministic well-known models:

 Halstead's software metric
 McCabe's cyclomatic complexity metric

 Halstead vs McCabe
 Halstead's software metric is used to estimate the number of errors in a

program
 McCabe's cyclomatic complexity metric is used to determine an upper

bound model for estimating the number of remaining software defects
 Both models represent a growing quantitative approach to the

measurement of computer software

 Probabilistic Reliability Models

 Classification
 According to (Pham2000a) probabilistic reliability models are classified

in different groups:
 Error seeding
 Failure rate
 Curve fitting
 Reliability growth
 Markov structure
 Time-series
 Nonhomogeneous Poisson process

Case Study
ACS (Attitude Control System) for AraMiS satellite

 Use Case Diagram of the ACS system

 Class Case Diagram of the ACS system

 Tools usage

 Tools
 Commercial tools:
 Lambda Predict
 Weibull++
 ALTA
 DOE++
 Etc...
 Other tools:

 CASRE (Computer Aided Software Reliability tool)
 AutoTest

 Conclusions

 All software tolerance techniques provide tolerance to software design
faults, but do not provide protection against errors in requirement
specifications

 This techniques are widely used in systems where faults can result in
failures with catastrophic consequences:

 Aerospace, Nuclear Power, Healthcare etc.

 Thank you very much for the attention!
 Suggestions are kindly appreciated

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

