

Student: Orges Cico

Models and techniques to evaluate
Software and System reliability

 Outline
 Dependability Concepts
 Means to achieve dependable software
 Reliability Measures
 Reliability Models
 Case Study
 Possible Tool usage
 Suggestions

 Dependability Concepts

 General Definition
 Dependability is a value showing the reliability of a person to others

because of his/her integrity, truthfulness, and trustfulness, traits that can
encourage someone to depend on him/her.

 Computer System Dependability
 Dependability as applied to computer systems is defined as the

trustworthiness of a computer system such that reliance can justifiably be
placed on the service it delivers.

 Dependability can be thought of as being composed of three elements:
 Impairments
 Means
 Attributes

© 1996 Handbook of Software Reliability Engineering, M. Luy

 Dependability Tree
 The main characteristics of dependability can be summarized in the

form of a tree:

Dependability

Impairments

Means

Attributes

Faults

Errors

Failures

Construction

Validation

Fault Tolerance

Fault Prevention

Fault Forecasting

Fault Removal

Confidentiality

Maintainability
Safety

Integrity

Reliability

Availability
Security

 Impairments, Means and Attributes
 Impairments

 Things that can affect Dependability
 Means

 Ways to increase Dependability
 Attributes

 Way to assess Dependability

 Means to achieve dependable software

 Means

Dependability

Impairments

Means

Attributes

Faults

Errors

Failures

Construction

Validation

Fault Tolerance

Fault Prevention

Fault Forecasting

Fault Removal

Confidentiality

Maintainability
Safety

Integrity

Reliability

Availability
Security

 Means
 Fault Prevention

 Prevent fault occurrence or introduction
 Fault Removal

 Reduce the presence of faults
 Fault Tolerance

 Ensures a service capable of fulfilling system's functions in presence of faults
 Fault Forecasting

 Predicts likely faults so that they can be removed or their effects can be
circumvented

 Fault Prevention
 Fault prevention techniques are dependability enhancing techniques

employed during software development to reduce the number of faults
introduced during construction.

 Fundamental techniques:
 Refinement of system requirements
 Engineering software specification process
 Structured design methods (e.g. writing clear and structured code)
 Reusability
 Formal Methods

 System Requirements Specification

 Imperfect process
 System failures may occur

 due to logic errors incorporated in the requirements
 Software matches requirements, but the derived system behavior is not the
expected one
 Due to lack of communication between software and system engineering
disciplines

 Solution: Interactive refinement of requirements and engineering of the
requirements specification process

 Structured Design vs Formal Methods

 Structured Software Design and programming reduces component's
complexity and interdependency => reduces the introduction of faults

 Decoupling and modularization
 Information hiding

 Formal Methods are very thorough, using mathematically tractable
languages and tools to verify correctness and appropriateness.

 Drawback: overhead on the development process
 Used for small components highly critical to the entire system

 Reusablity

 Reusability of code components can be helpful when the code to be
reused has been proven to be dependable

 Drawback: reuse of software doesn't guarantee improvement in dependability
(e.g. highly reliable software is not necessarily safer)

 Fault Removal

 Fault removal techniques involve
 Detecting existing faults (through verification and validation (V&V) methods)
 Eliminating existing faults

 This techniques improve system dependability through:
 Software Testing
 Formal inspection
 Formal design proofs

 Fault Removal Techniques

 Software testing
 Prohibitive cost
 Complexity of exhaustive testing over large systems
 Testing can show the presence but not the absence of faults
 Adequate test coverage and appropriate test quality measures
 Efficient testing only on small and critical components

 Formal Inspection
 Rigorous process, accompanied by documentation
 Source code examination to find, correct faults and verify correction
 Performed prior to the testing phase life cycle

 Fault Removal Techniques

 Formal design proofs
 Closely related to formal methods
 Mathematical proof for correctness
 Costly and complex to use
 Not fully developed methods
 Feasible on a small and critical portion of code

 Fault Forecasting

 Fault Forecasting focuses on the reliability measure of dependability
 Fault Forecasting techniques are used during validation to:

 Estimate the presence of faults
 The occurrence and consequences of failures

 This techniques include two types of activities:
 Reliability Estimation
 Reliability Prediction

 Reliability Estimation and Prediction

 Reliability Estimation
 Determines current software reliability through statistical interference
techniques to failure data obtained during testing or system operation

 Reliability Prediction
 Determines future software reliability based upon available software metrics

and measures
 Techniques used depend on the software development stage

 Fault Tolerance

 Fault Tolerance techniques enable a system to tolerate software faults
remaining in the system after its development

 This techniques provide service complying with the relevant
specification in spite of faults through:

 Single Version Software Environment
 Multiple Version Software Environment
 Multiple Data Representation Environment

 Single vs Multiple Version SE

 Single Version SE
 Monitoring
 Atomicity of actions
 Decision Verification
 Exception Handling

 Multiple Version SE (design diversity)
 Functionally equivalent and independent software versions
 Examples: Recovery Blocks (RcB), N-version programming (NVP), N-self

checking programming

 Redundancy for software fault tolerance

 Robust Software
 Out of range inputs
 Inputs of the wrong type
 Inputs in the wrong format

 Redundancy Implementation

 Design Diversity

 Provision of identical services through separate design and
implementations

 Design diverse techniques

 Well-known design diverse techniques are:
 Recovery Blocks (RcB)
 N-Version Programming (NVP)
 Distributed Recovery Blocks
 N Self-Checking Programming
 Consensus Recovery Block
 Acceptance Voting

 Data diversity

 Three well-known data diverse techniques are:
 Retry blocks (Amman and Knight)
 N-Copy Programming (Ammann and Knight)
 Two pass adjudicator (Phullum)

 Reliability Measures

 Software Reliability Definition and Measure

 Software Reliability is defined as the probability of failure-free software
operation for a specified period of time in a specified environment

 => Reliability may be used as a measure of the system's success in
providing it's function properly

 Reliability Measure

 Reliability Function R(t) is the probability that a system will be successful in the
interval from time 0 to time
 Mathematically:

 T is a random variable denoting the time-to-failure

R t  = P Tt  s.t. t≥0

 Time to failure: probability density function
 The time to failure random variable T has a density function f(t), such

that:

 f(t) describes how the failure probability is spread over time
 f(t) properties:

 Non-negative
 Total area beneath f(t) is equal to one :

f t  = lim
 t 0

P t  T ≤ t t 

∫
0

∞

f t dt = 1

 Common pdf
 Common probability distribution functions (pdf) that have applications in

reliability engineering (Pham 2000a) are:
 Binomial Distribution
 Poisson Distribution
 Exponential Distribution
 Normal Distribution
 Weibull Distribution

 Given a particular pdf:
 R(t) can be derived directly

 Availability Measure
 Availability A(t) is defined as the probability that the the system is successful at

time t
 Mathematically:

 Repairable systems:
 Non-repairable systems:

A t  =
Systemuptime

SystemuptimeSystemdowntime
=

MTTF
MTTFMTTR

A t ≥R t 

A t  = R t 

 Availability: Mean Time Between Failures (MTBF)
 MTBF is the expected value of the random variable time between

failures defined as:

MTBF = MTTFMTTR

Up

Down
off Failure Failure

Downtime (unplanned) Uptime (after repair)

 Time Between Failures

 Reliability Models

 Model Types
 It is highly desirable and difficult, without knowing what the initial errors

are, to have an estimate of the remaining errors in a software system
 There exist two main types of software reliability models:

 Deterministic
 Probabilistic

 Deterministic Reliability Models

 Deterministic Model
 The Deterministic Model is used to study in the program:

 The number of distinct operators and operands
 The number of errors and machine instructions

 Performance measures of deterministic type are obtained:
 By analyzing the program texture
 Do not involve any random event

 Well-known models
 There exist two deterministic well-known models:

 Halstead's software metric
 McCabe's cyclomatic complexity metric

 Halstead vs McCabe
 Halstead's software metric is used to estimate the number of errors in a

program
 McCabe's cyclomatic complexity metric is used to determine an upper

bound model for estimating the number of remaining software defects
 Both models represent a growing quantitative approach to the

measurement of computer software

 Probabilistic Reliability Models

 Classification
 According to (Pham2000a) probabilistic reliability models are classified

in different groups:
 Error seeding
 Failure rate
 Curve fitting
 Reliability growth
 Markov structure
 Time-series
 Nonhomogeneous Poisson process

Case Study
ACS (Attitude Control System) for AraMiS satellite

 Use Case Diagram of the ACS system

 Class Case Diagram of the ACS system

 Tools usage

 Tools
 Commercial tools:
 Lambda Predict
 Weibull++
 ALTA
 DOE++
 Etc...
 Other tools:

 CASRE (Computer Aided Software Reliability tool)
 AutoTest

 Conclusions

 All software tolerance techniques provide tolerance to software design
faults, but do not provide protection against errors in requirement
specifications

 This techniques are widely used in systems where faults can result in
failures with catastrophic consequences:

 Aerospace, Nuclear Power, Healthcare etc.

 Thank you very much for the attention!
 Suggestions are kindly appreciated

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

