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 Dependability Concepts



 

 

 General Definition
  Dependability is a value showing the reliability of a person to others 

because of his/her integrity, truthfulness, and trustfulness, traits that can 
encourage someone to depend on him/her.

 



 

 

 Computer System Dependability
  Dependability as applied to computer systems is defined as the 

trustworthiness of a computer system such that reliance can justifiably be 
placed on the service it delivers.

  Dependability can be thought of as being composed of three elements: 
 Impairments
 Means
 Attributes
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 Dependability Tree
  The main characteristics of dependability can be summarized  in the 

form of a tree:
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 Impairments, Means and Attributes
  Impairments

 Things that can affect Dependability 
  Means

 Ways to increase Dependability
  Attributes

 Way to assess Dependability



 

 Means to achieve dependable software
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 Means
  Fault Prevention  

 Prevent fault occurrence or introduction
  Fault Removal

 Reduce the presence of faults
  Fault Tolerance 

 Ensures a service capable of fulfilling system's functions in presence of faults
 Fault Forecasting 

 Predicts likely faults so that they can be removed or their effects can be 
circumvented

 



 

 

 Fault Prevention
  Fault prevention techniques are dependability enhancing techniques 

employed during software development to reduce the number of faults 
introduced during construction. 

  Fundamental techniques: 
 Refinement of system requirements
 Engineering software specification process
 Structured design methods (e.g. writing clear and structured code)
 Reusability 
 Formal Methods 

 



 

 

 System Requirements Specification

  Imperfect process
  System failures may occur 

 due to logic errors incorporated in the requirements
 Software matches requirements, but the derived system behavior is not the 
expected one 
 Due to lack of communication between software and system engineering 
disciplines

  Solution: Interactive refinement of requirements and engineering of the 
requirements specification process

 

 



 

 

 Structured Design vs Formal Methods

  Structured Software Design and programming reduces component's 
complexity and interdependency => reduces the introduction of faults 

 Decoupling and modularization 
 Information hiding

  Formal Methods are very thorough, using mathematically tractable 
languages and tools to verify correctness and appropriateness. 

 Drawback:  overhead on the development process
 Used for small components highly critical to the entire system

 



 

 

 Reusablity 

  Reusability of code components can be helpful when the code to be 
reused has been proven to be dependable 

 Drawback: reuse of software doesn't guarantee improvement in dependability 
(e.g. highly reliable software is not necessarily safer)

 



 

 

 Fault Removal

  Fault removal techniques involve
 Detecting existing faults (through verification and validation (V&V) methods)  
 Eliminating existing faults

  This techniques improve system dependability through: 
 Software Testing
 Formal inspection
 Formal design proofs

 



 

 

 Fault Removal Techniques

  Software testing 
 Prohibitive cost
 Complexity of exhaustive testing over large systems
 Testing can show the presence but not the absence of faults
 Adequate test coverage and appropriate test quality measures
 Efficient testing only on small and critical components

  Formal Inspection
 Rigorous process, accompanied by documentation
 Source code examination to find, correct faults and verify correction  
 Performed prior to the testing phase life cycle

 



 

 

 Fault Removal Techniques

  Formal design proofs 
 Closely related to formal methods
 Mathematical proof for correctness
 Costly and complex to use 
 Not fully developed methods
 Feasible on a small and critical portion of code

 



 

 

 Fault Forecasting

  Fault Forecasting focuses on the reliability measure of dependability
  Fault Forecasting techniques are used during validation to:

 Estimate the presence of faults
 The occurrence and consequences of failures

  This techniques include two types of activities:
 Reliability Estimation
 Reliability Prediction

 



 

 

 Reliability Estimation and Prediction

  Reliability Estimation
 Determines current software reliability through statistical interference 
techniques to failure data obtained during testing or system operation

  Reliability Prediction
 Determines future software reliability based upon available software metrics 

and measures
 Techniques used depend on the software development  stage

 



 

 

 Fault Tolerance

  Fault Tolerance techniques enable a system to tolerate software faults 
remaining in the system after its development

  This techniques provide service complying with the relevant 
specification in spite of faults through:

 Single Version Software Environment
 Multiple Version Software Environment
 Multiple Data Representation Environment

 



 

 

 Single vs Multiple Version SE

 Single Version SE
 Monitoring
 Atomicity of actions
 Decision Verification
 Exception Handling

 Multiple Version SE (design diversity)
 Functionally equivalent and independent software versions 
 Examples: Recovery Blocks (RcB), N-version programming (NVP), N-self 

checking programming

 



 

 

       Redundancy for software fault tolerance 

  Robust Software
 Out of range inputs
 Inputs of the wrong type 
 Inputs in the wrong format

 



 

 

       Redundancy Implementation

 



 

 

 Design Diversity

 Provision of identical services through separate design and 
implementations



 

 

       Design diverse techniques

  Well-known design diverse techniques are:
 Recovery Blocks (RcB)
 N-Version Programming (NVP)
 Distributed Recovery Blocks
 N Self-Checking Programming
 Consensus Recovery Block
 Acceptance Voting

 



 

 

       Data diversity

  Three well-known data diverse techniques are:
 Retry blocks (Amman and Knight)
 N-Copy Programming (Ammann and Knight) 
 Two pass adjudicator (Phullum)

 



 

 Reliability Measures



 

 

 Software Reliability Definition and Measure

 Software Reliability is defined as the probability of failure-free software 
operation for a specified period of time in a specified environment 

 => Reliability may be used as a measure of the system's success in 
providing it's function properly

 



 

 

 Reliability Measure

 Reliability Function R(t) is the probability that a system will be successful in the 
interval from time 0 to time  
 Mathematically:

 T is a random variable denoting the time-to-failure

 

 

R t  = P Tt  s.t. t≥0



 

 

 Time to failure: probability density function
  The time to failure random variable T has a density function f(t), such 

that:

  f(t) describes how the failure probability is spread over time
  f(t) properties:

 Non-negative
 Total area beneath f(t) is equal to one :

 

 

f t  = lim
 t 0

P t  T ≤ t t 

∫
0

∞

f t dt = 1



 

 

       Common pdf
  Common probability distribution functions (pdf) that have applications in 

reliability engineering (Pham 2000a) are:
 Binomial Distribution
 Poisson Distribution
 Exponential Distribution
 Normal Distribution
 Weibull Distribution

  Given a particular pdf:
 R(t)  can be derived directly

 

 



 

 

 Availability Measure
  Availability A(t) is defined as the probability that the the system is successful at 

time t
 Mathematically:

 Repairable systems:
 Non-repairable systems: 

 

 

A t  =
Systemuptime

SystemuptimeSystemdowntime
=

MTTF
MTTFMTTR

A t ≥R t 

A t  = R t 



 

 

 Availability: Mean Time Between Failures (MTBF)
  MTBF  is the expected value of the random variable time between 

failures defined as:

 

 

MTBF = MTTFMTTR

Up

Down
off  Failure  Failure

Downtime (unplanned)  Uptime (after repair)

  Time Between Failures



 

 Reliability Models



 

 

     Model Types
  It is highly desirable and difficult, without knowing what the initial errors 

are, to have an estimate of the remaining errors in a software system
  There exist two main types of software reliability models:

 Deterministic
 Probabilistic

 



 

 Deterministic Reliability Models



 

 

     Deterministic Model
  The Deterministic Model is used to study in the program:

 The number of distinct operators and operands
 The number of errors and machine instructions

  Performance measures of deterministic type are obtained: 
 By analyzing the program texture
 Do not involve any random event

 



 

 

     Well-known models
  There exist two deterministic well-known models: 

 Halstead's software metric
 McCabe's cyclomatic complexity metric

 



 

 

       Halstead vs McCabe
  Halstead's software metric is used to estimate the number of errors in a 

program
  McCabe's cyclomatic complexity metric is used to determine an upper 

bound model for estimating the number of remaining software defects
  Both models represent a growing quantitative approach to the 

measurement of computer software



 

 Probabilistic Reliability Models



 

 

       Classification
  According to (Pham2000a) probabilistic reliability models are classified 

in different groups:
 Error seeding
 Failure rate
 Curve fitting
 Reliability growth
 Markov structure
 Time-series
 Nonhomogeneous Poisson process
 



 

Case Study
ACS (Attitude Control System) for AraMiS satellite 



 

 

       Use Case Diagram of the ACS system



 

 

       Class Case Diagram of the ACS system



 

 Tools usage



 

 

     Tools
  Commercial tools:
     Lambda Predict
     Weibull++
     ALTA
     DOE++
     Etc...
  Other tools:

 CASRE (Computer Aided Software Reliability tool)
 AutoTest

 



 

 

       Conclusions

  All software tolerance techniques provide tolerance to software design 
faults, but do not provide protection against errors in requirement 
specifications

  This techniques are widely used in systems where faults can result in 
failures with catastrophic consequences:

 Aerospace, Nuclear Power, Healthcare etc.



 

 
    

        Thank you very much for the attention!      
          Suggestions are kindly appreciated
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